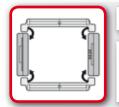
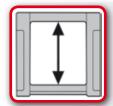


System overview

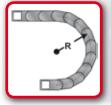


Stainless steel VAW-E

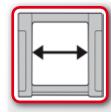
Aluminium VAW



Technical data


Loading side

inside and outside flexure curve

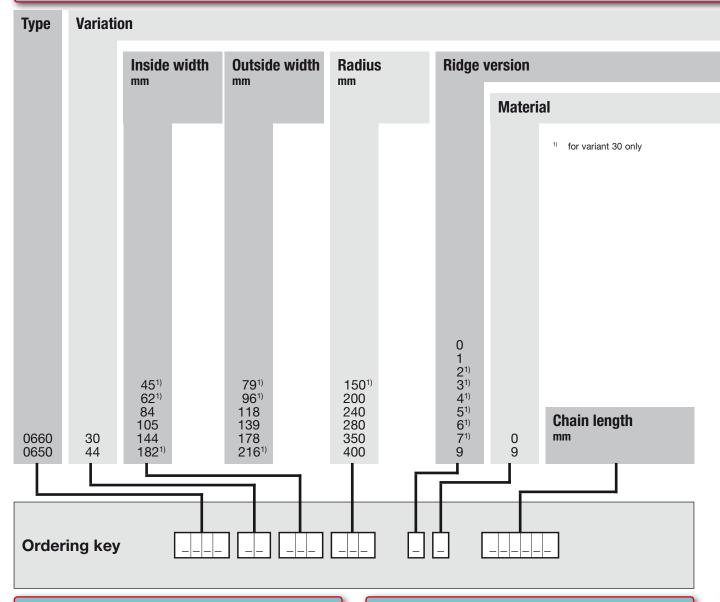

Available interior heights

60.0 mm

Available radii

150.0 – 400.0 mm

Available interior widths


45.0 - 182.0 mm

With aluminium frame bridge

70.0 – 600.0 mm

Ordering key

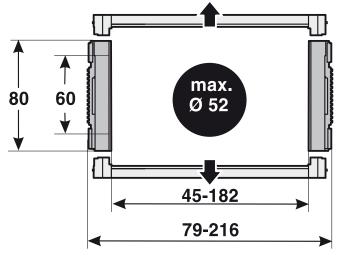
Note on configuration

Frame bridges and cover from aluminium:

Aluminium frame bridges and covers can be supplied in 1 mm width sizes for inner widths from 70.0 mm – 600.0 mm.

If frame bridge strain relief plates (RS-ZL) are to be deployed, take standard widths into account.

Crossbar connector and frame bridge strain relief plate:


Once inner widths exceed 246 mm, we recommend the deployment of crossbar connectors (RSV). Crossbar connectors cannot be used in conjunction with covers made from plastic or aluminium. If frame bridge strain relief plates (RS-ZL) are to be placed in the chain brackets, take the standard widths that can be supplied into account.

For detailed information, please consult the corresponding product documentation.

Chain link

Loading side:

inside and outside flexure curve

Dimensions in mm

- with bias PA full-ridged without bias

PA full-ridged

- 2 PA half-ridged with bias
- PA half-ridged without bias
- 4 Aluminium full-ridged with bias
- 5 Aluminium full-ridged without bias
- 6 Aluminium half-ridged with bias
- Aluminium half-ridged without bias
- Special version

- 30 Frame bridge on outside of radius Frame bridge on inside of radius Opens on inside and outside of radius
- 44 Cover on outside of radius Cover on inside of radius Opens on inside and outside of radius

Order sample: 0660 30 045 150 0 0 1556

Standard (PA/black)

Special version

Frame bridge in outside bend, frame bridge in inside bend, can be opened from inside and outside bend Inside width 45 mm; radius 150 mm

50.0 m

Plastic bridge, full-ridged with bias, material black-coloured polyamide Chain length 1556 mm (17 links)

Technical specifications

Travel distance vertical, hanging L_{vh} max.:

Travel distance gliding L_a max.: 60.0 m

Travel distance self-supporting L, max.: see diagram

Travel distance vertical, upright L_{vs} max.: 5.0 m

Rotated 90°, unsupported L_{qnf} max.: 2.0 m

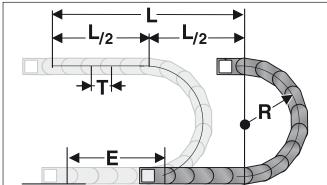
Speed, gliding V_a max.: 5.0 m/s

Speed, self-supporting V_r max.: 15.0 m/s

Acceleration, gliding a max.: 15.0 m/s² 20.0 m/s² Acceleration, self-supporting a, max.:

Material properties

Standard material: Polyamide (PA) black -30.0 - 120.0 °C Service temperature:


Gliding friction factor: 0.3

Static friction factor: 0.45

Fire classification: Based on UL 94 HB

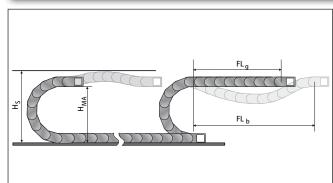
Other material properties on request.

Determining the chain length

The fixed point of the cable drag chain should be connected in the middle of the travel distance.

This arrangement gives the shortest connection between the fixed point and the moving consumer and thus the most efficient chain length.

Chain length calculation = $L/2 + \pi * R + E$ \approx 1 m chain = 11 qty. x 91.5 mm links.


E = distance between entry point and middle of travel distance

L = travel distance

R = radius

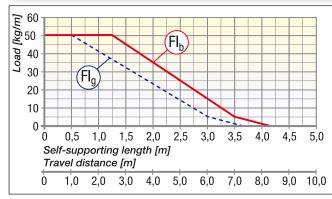
P = Pitch

Self-supporting length

The self-supporting length is the distance between the chain bracket on the moving end and the start of the chain arch.

The installation variant FL_g offers the lowest load and wear for the cable drag chain.

The maximum travel parameters (speed and acceleration) can be applied for this variant.

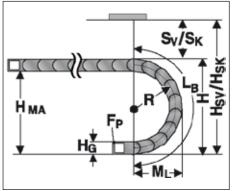

H_s = Installation height plus safety

H_{MA} = Height of moving end connection

= Self-supporting length, upper run straight

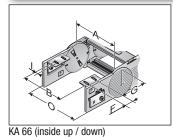
FL_b = Self-supporting length, upper run bent

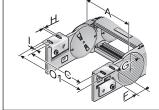
Load diagram for self-supporting applications



 $\mathbf{FL_g}$ Self-supporting Length, upper run straight In the $\mathbf{FL_g}$ range, the chain upper run still has a bias, is straight or has a maximum sag of

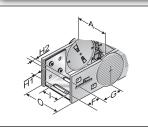
FL_b Self-supporting Length, upper run bent In the FL_b range, the chain upper run has a sag of more than , but this is still less than the maximum sag. Where the sag is greater than that permitted in the FL_b range, the application is critical and should be avoided. The self-supporting length can be optimized by using a support for the upper run or a more stable cable drag chain.




Installation dimensions

Radius R	150	200	240	280	350	400
Outside height of chain link (H _g)	80	80	80	80	80	80
Height of bend (H)	380	480	560	640	780	880
Height of moving end connection (H_{MA})	300	400	480	560	700	800
Safety margin with bias (S_v)	50	50	50	50	50	50
Installation height with bias (H_{sv})	430	530	610	690	830	930
Safety margin without bias (S _K)		15	15	15	15	15
Installation height without bias (H _{SK})	395	495	575	655	795	895
Arc projection (M _L)	282	332	372	412	482	532
Bend length (L _B)	688	845	971	1096	1316	1473

Chain bracket angle

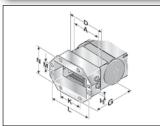


KA 66 (outside up / down)

There are several options regarding the chain bracket. The fixed-point bracket (inside/bottom) and the moving end bracket (inside/top) are supplied as standard. However, any other combination can be supplied upon request. The chain bracket is fastened at the end like a side link. This enables the chain to move right up to the bracket. Each chain requires two chain brackets. The brackets should be fastened with M8 screws.

Туре	Order no.	Material	Inside width A mm	B mm	C mm	F mm	~	HØ mm	I mm	Outside width KA O mm	Outside width KA 01 mm
KA 66	0660000050	Sheet steel	62.0 - 182.0	A-17.0	A+51.0	45.0	50.5	9.0	10.0	A+34.0	A+64.0
KA 66	0660000060	Stainless steel 1.4301	62.0 - 182.0	A-17.0	A+51.0	45.0	50.5	9.0	10.0	A+34.0	A+64.0

Chain bracket U-part

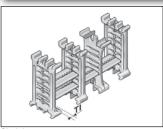

As standard, this chain bracket is supplied in a width of 45 mm. Bracket can be mounted up or down.

KA 66 U

Туре	Order no.	Material	Inside width A mm	F mm	G mm	H1 mm	H2 mm	l mm	Outside width KA O mm
KA 66 U	0660000054	Sheet steel	45.0	28.0	58.5	6.5	8.5	33.0	A+34.0

135

End brackets flange



A cable drag chain requires two chain brackets. The divisible flange connection has been specifically designed for commissioning and re-installation. This keeps the chain in the installed position.

FL 082 - 142

Туре	Order no.	Material	Inside width A mm	G mm	HØ mm	K mm	L mm	M mm	N mm
FL 082	0650000070	Sheet steel	86.0	60.4	7.0	78.0	141.5	40.0	105.0
FL 107	0650000072	Sheet steel	102.0	60.4	7.0	100.0	163.5	40.0	105.0
FL 142	0650000074	Sheet steel	125.0	60.4	7.0	138.0	201.5	40.0	105.0
FL 082	0650000080	Stainless steel 1.4301	86.0	60.4	7.0	78.0	141.5	40.0	105.0
FL 107	0650000082	Stainless steel 1.4301	102.0	60.4	7.0	100.0	163.5	40.0	105.0
FL 142	0650000084	Stainless steel 1.4301	125.0	60.4	7.0	138.0	201.5	40.0	105.0

Shelving system

In connection with at least two shelf supports (RT) the shelf becomes a shelving system. The additional levels prevent cables from criss-crossing and therefore destroying each other, while also avoiding excessive friction. The shelving system may be preassembled on request.

Shelving system

Туре	Order no.	Designation	Width mm	Pitch mm	TI mm
RB 031	10000003100	Shelf	31.0	1.6	
RB 048	10000004800	Shelf	48.0	1.6	
RB 070	10000007000	Shelf	70.0	1.6	
RB 092	10000009200	Shelf	92.0	1.6	
RB 100	10000010000	Shelf	100.0	1.6	
RB 128	100000012800	Shelf	128.0	1.6	
RB 167	100000016700	Shelf	167.0	1.6	
RT 66	1000900100	Shelf support		1.6	6.5

Separator

We recommend that separators be used if multiple round cables or conduits with differing diameters are to be installed. An offset configuration of the separators is advisable.

Separator

Туре	Order no.	Designation	Pitch mm	TI mm	H mm	H1 mm	H2 mm	H3 mm	H4 mm	H5 mm	HI mm
TV 66	066000009000	Separator	1.6	3.5	4.4	18.0	25.1	32.2	39.3	46.4	60.0

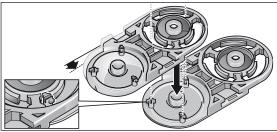
Back radii

Side links with radius forward (R) and radius backward (Rü) allow for movement in two directions. This is intended for rotating movements and lowered chain brackets.

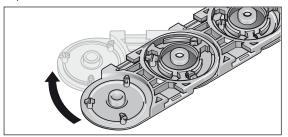
Rotating movement

Туре	Order no.	Back radius mm	Version
SR 66 (RÜ240)	066000000060	240.0	Available for radii 150, 200, 240, 280 and 350 mm

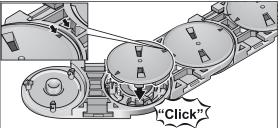
Guide channels (VAW)

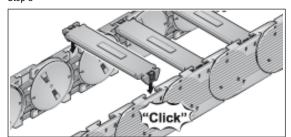

For this cable drag chain, a variable guide channel system is available, constructed from aluminium sections.

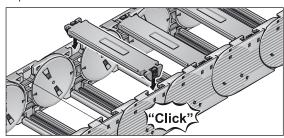
The variable guide channel ensures that the cable drag chain is supported and guided securely.

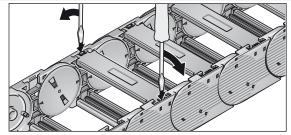

For help on choosing, please consult the chapter "Variable Guide Channel System".

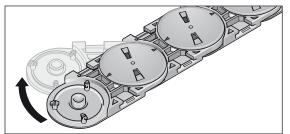
VAW

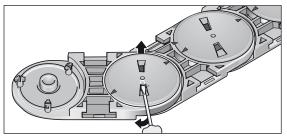

Assembly

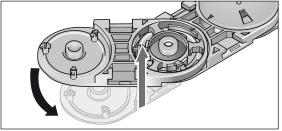

Sten 1


Step 2


Step 3


Step 4


Disassembly


Step 1

Step 2

Step 3

Step 4

