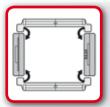
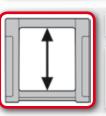



MultiLine MP 43G


# System overview





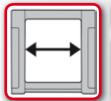



# **Technical data**



Loading side

inside and outside flexure curve

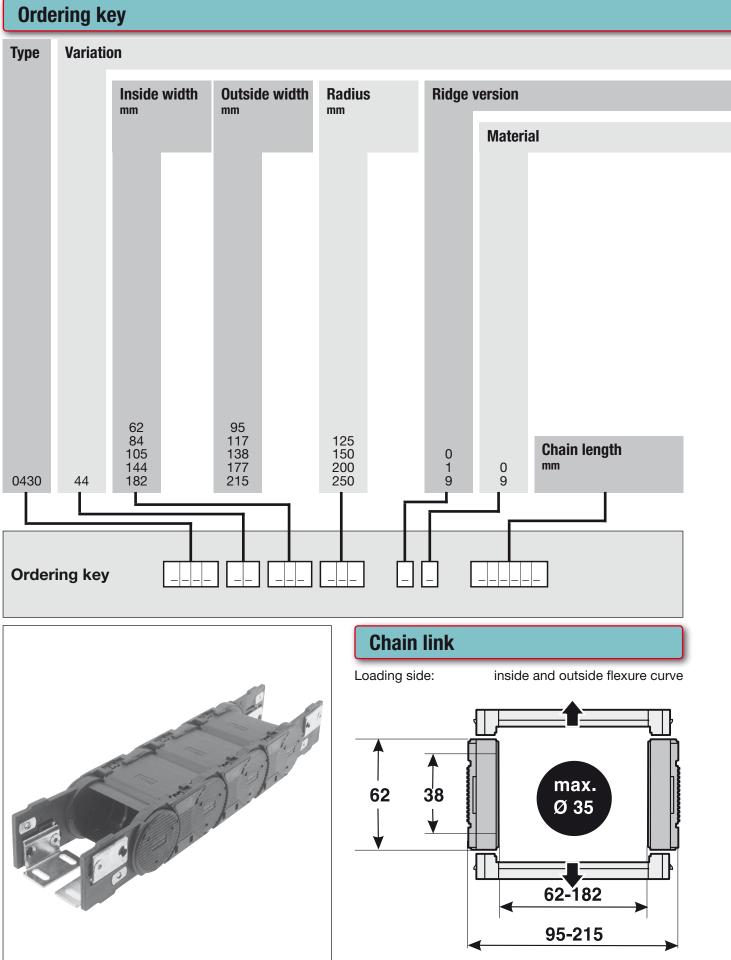



Available interior heights

38.0 mm



**Available radii** 125.0 – 250.0 mm




Available interior widths

62.0 – 182.0 mm



116



Dimensions in mm



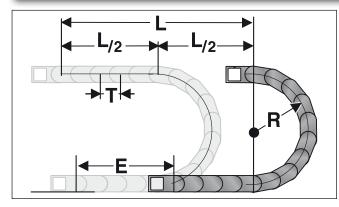


#### Order sample: 0430 44 062 125 0 0 1435

Cover in outside bend, cover in inside bend, openable from inside and outside bend Inside width 62 mm; radius 125 mm Plastic bridge, full-ridged with bias, material black-coloured polyamide Chain length 1435 mm (19 links)

#### **Technical specifications**

| Travel distance gliding L <sub>g</sub> max.:             | 50.0 m                |
|----------------------------------------------------------|-----------------------|
| Travel distance self-supporting L <sub>f</sub> max.:     | see diagram           |
| Travel distance vertical, hanging $\rm L_{\rm vh}$ max.: | 40.0 m                |
| Travel distance vertical, upright $L_{vs}$ max.:         | 3.0 m                 |
| Rotated 90°, unsupported L <sub>90f</sub> max.:          | 1.0 m                 |
| Speed, gliding $V_g$ max.:                               | 5.0 m/s               |
| Speed, self-supporting V <sub>f</sub> max.:              | 15.0 m/s              |
| Acceleration, gliding a <sub>g</sub> max.:               | 15.0 m/s <sup>2</sup> |
| Acceleration, self-supporting a <sub>f</sub> max.:       | 20.0 m/s <sup>2</sup> |


# **Material properties**

| Standard material:       | Polyamide (PA) black |
|--------------------------|----------------------|
| Service temperature:     | -30.0 – 120.0 °C     |
| Gliding friction factor: | 0.3                  |
| Static friction factor:  | 0.45                 |
| Fire classification:     | Based on UL 94 HB    |

Other material properties on request.

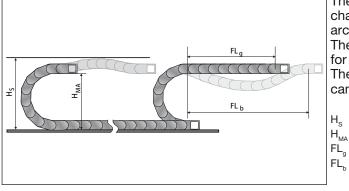


#### **Determining the chain length**



The fixed point of the cable drag chain should be connected in the middle of the travel distance.

This arrangement gives the shortest connection between the fixed point and the moving consumer and thus the most efficient chain length.


Chain length calculation =  $L/2 + \pi * R + E \approx 1 \text{ m chain} = 13 \text{ qty. } x 75.5 \text{ mm links.}$ 

E = distance between entry point and middle of travel distance

L = travel distance

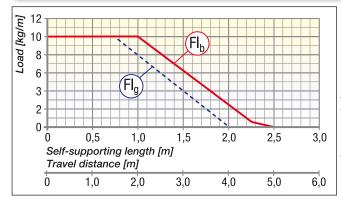
R = radius P = Pitch

# Self-supporting length



The self-supporting length is the distance between the chain bracket on the moving end and the start of the chain arch.

The installation variant  ${\rm FL}_{_{\rm g}}$  offers the lowest load and wear for the cable drag chain.

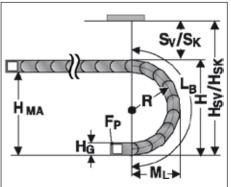

The maximum travel parameters (speed and acceleration) can be applied for this variant.

I<sub>s</sub> = Installation height plus safety

 $H_{MA}$  = Height of moving end connection

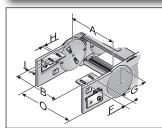
- $L_{g}$  = Self-supporting length, upper run straight
- $L_{b}^{r}$  = Self-supporting length, upper run bent

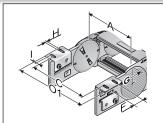
#### Load diagram for self-supporting applications




**FL**<sub>g</sub> Self-supporting Length, upper run straight In the FL<sub>g</sub> range, the chain upper run still has a bias, is straight or has a maximum sag of

**FL**<sub>b</sub> Self-supporting Length, upper run bent In the FL<sub>b</sub> range, the chain upper run has a sag of more than , but this is still less than the maximum sag. Where the sag is greater than that permitted in the FL<sub>b</sub> range, the application is critical and should be avoided. The self-supporting length can be optimized by using a support for the upper run or a more stable cable drag chain.





### **Installation dimensions**



| 1                                                             |     |     |     |     |
|---------------------------------------------------------------|-----|-----|-----|-----|
| Radius R                                                      | 125 | 150 | 200 | 250 |
| Outside height of chain link ( $H_{\rm g}$ )                  | 62  | 62  | 62  | 62  |
| Height of bend (H)                                            | 312 | 362 | 462 | 562 |
| Height of moving end connection (H <sub>MA</sub> )            | 250 | 300 | 400 | 500 |
| Safety margin with bias ( $S_v$ )                             | 38  | 38  | 38  | 38  |
| Installation height with bias $(H_{sv})$                      | 350 | 400 | 500 | 600 |
| Safety margin without bias ( $S_{\kappa}$ )                   | 13  | 13  | 13  | 13  |
| Installation height without bias $(\mathrm{H}_{\mathrm{sk}})$ | 325 | 375 | 475 | 575 |
| Arc projection (M <sub>L</sub> )                              | 232 | 257 | 307 | 357 |
| Bend length (L <sub>B</sub> )                                 | 565 | 644 | 801 | 958 |

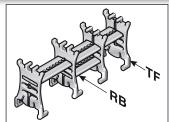
#### Chain bracket angle





There are several options regarding the chain bracket. The fixed-point bracket (inside/bottom) and the moving end bracket (inside/top) are supplied as standard. However, any other combination can be supplied upon request. The chain bracket is fastened at the end like a side link. This enables the chain to move right up to the bracket. Each chain requires two chain brackets. The brackets should be fastened with M6 screws.

KA 44 (inside up / down)


KA 44 (outside up / down)

| Туре  | Order no.  | Material               | Inside width<br>A<br>mm | B<br>mm | C<br>mm | E<br>mm | F<br>mm | G<br>mm | HØ<br>mm | l<br>mm | Outside<br>width KA<br>O<br>mm | Outside<br>width KA<br>01<br>mm |
|-------|------------|------------------------|-------------------------|---------|---------|---------|---------|---------|----------|---------|--------------------------------|---------------------------------|
| KA 44 | 0440000050 | Sheet steel            | 62.0 - 182.0            | A-14.5  | A+38.5  | A+32.0  | 32.0    | 43.2    | 6.5      | 12.5    | A+33.0                         | A+64.0                          |
| KA 44 | 0440000052 | Stainless steel 1.4301 | 62.0 - 182.0            | A-14.5  | A+38.5  | A+32.0  | 32.0    | 43.2    | 6.5      | 12.5    | A+33.0                         | A+64.0                          |



#### **Shelving system**





The shelf must be used with a minimum of two separators to create a shelving system. The additional levels prevent cables from criss-crossing and therefore destroying each other, while also avoiding excessive friction. The shelves are matched to the available chain widths.

Shelving system

| Туре   | Order no.   | Designation | Width<br>mm | Pitch<br>mm |
|--------|-------------|-------------|-------------|-------------|
| RB 031 | 10000003100 | Shelf       | 31.0        | 1.6         |
| RB 048 | 10000004800 | Shelf       | 48.0        | 1.6         |
| RB 070 | 10000007000 | Shelf       | 70.0        | 1.6         |
| RB 092 | 10000009200 | Shelf       | 92.0        | 1.6         |
| RB 128 | 10000012800 | Shelf       | 128.0       | 1.6         |
| RB 167 | 10000016700 | Shelf       | 167.0       | 1.6         |

# Separator



We recommend that moveable separators are used if multiple round cables or conduits with differing diameters are to be installed. An offset configuration of the separators is advisable. The separator will stay solidly assembled at one side when the frame bridge is opened.

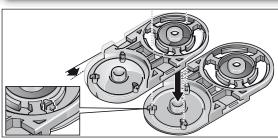
Separator

| Туре  | Order no.  | Designation | Pitch<br>mm | TI<br>mm | H<br>mm | H1<br>mm | H2<br>mm | H3<br>mm | HI<br>mm |
|-------|------------|-------------|-------------|----------|---------|----------|----------|----------|----------|
| TF 43 | 0430000090 | Separator   | 1.6         | 4.0      | 4.3     | 12.3     | 19.5     | 26.5     | 38.0     |
|       |            |             |             |          |         |          |          |          |          |
|       |            |             |             |          |         |          |          |          |          |
|       |            |             |             |          |         |          |          |          |          |
|       |            |             |             |          |         |          |          |          |          |
|       |            |             |             |          |         |          |          |          |          |
|       |            |             |             |          |         |          |          |          |          |
|       |            |             |             |          |         |          |          |          |          |
|       |            |             |             |          |         |          |          |          |          |
|       |            |             |             |          |         |          |          |          |          |
|       |            |             |             |          |         |          |          |          |          |
|       |            |             |             |          |         |          |          |          |          |
|       |            |             |             |          |         |          |          |          |          |
|       |            |             |             |          |         |          |          |          |          |
|       |            |             |             |          |         |          |          |          |          |
|       |            |             |             |          |         |          |          |          |          |
|       |            |             |             |          |         |          |          |          |          |
|       |            |             |             |          |         |          |          |          |          |



# **Guide channels (VAW)**

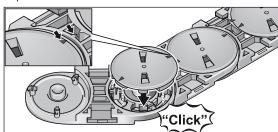



For this cable drag chain, a variable guide channel system is available, constructed from aluminium sections.

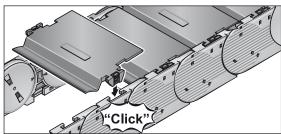
The variable guide channel ensures that the cable drag chain is supported and guided securely.

For help on choosing, please consult the chapter "Variable Guide Channel System".

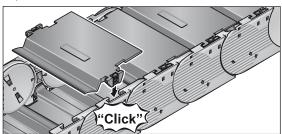
VAW


#### Assembly

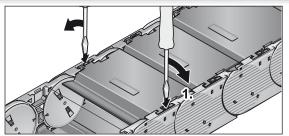



Step 1

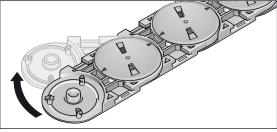



Step 2

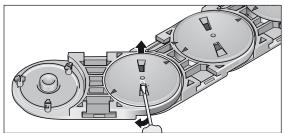



Step 3

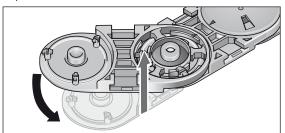



Step 4




#### **Disassembly**




Step 1



Step 2



Step 3



Step 4