

Linear Position Sensing and Measurement

The appropriate measuring principle for the optimal solution

With over 50 years of sensor experience, Balluff is a leading global sensor specialist with its own line of connectivity products for every area of factory automation. Balluff is based in Germany and has a tight international network of 54 representatives and subsidiaries.

Balluff stands for comprehensive systems from a single source, continuous innovation, state-of-the-art technology, highest quality, and greatest reliability. That's not all: Balluff also stands for exceptional customer orientation, customized solutions, fast worldwide service, and outstanding application assistance.

High-quality, innovative products tested in our own accredited laboratory and a quality management system certified according to DIN ISO 9001 (EN 2008) form a secure foundation for optimized added value for our customers.

Whether electronic and mechanical sensors, rotary and linear transducers, identification systems or optimized connection technology for high-performance automation, Balluff not only masters the entire technological variety with all of the different operating principles, but also provides technology that fulfills regional quality standards and is suitable for use worldwide. Wherever you are in the world, Balluff technology is never far away. You won't have to look far for your nearest Balluff expert.

Balluff products increase performance, quality and productivity around the world every day. They satisfy prerequisites for meeting demands for greater performance and cost reductions on the global market. Even in the most demanding areas. No matter how stringent your requirements may be, Balluff delivers state-of-the-art solutions.

Fully exploit the potential of high quality: with superior position measurement technology for more efficiency.

9	CERTIFICATE
	PGS (maximum contract or longer system)
	Ballof Godat Internet
	temporate an array a barly Recepted System.
	NAME AND A DESCRIPTION OF A DESCRIPTIONO
	Next a set in a set of the set of
	allander filly
200	Approximate and a second

Linear Position Sensing and Measurement **Contents**

Worldwide Sales	336
Alphanumerical Directory	338

Magnetically Coded Position and Angle Measurement System

Magnetically coded position		
and angle measurement system Applications Product overview Function principle	12 14 16	
S1H series	18	
S1F series	26	
S2B/S2E/S1C series	34	
Accessories	48	
Basic information and definitions	54	

A large range of position and angle measurement tasks or the dynamic, accurate detection of speed and rotational speeds of rotating shafts are solved in a wide variety of industries with magnetically coded systems.

A magnetic tape system consists of the sensor head, a tape for linear or rotary use, and accessories such as a counter display or guide system. The operating principle is non-contact and therefore wear-free. The measured value is available as an incremental or absolute output signal.

The tapes, magnetized using the Permagnet[®] process specially developed by Balluff, enable the highest accuracy. High flexibility is offered by rolls of magnetic tape, with lengths available up to 48 m. Customized, fabricated solutions as well as special codings achieve optimum results.

The real-time-capable BML position measuring systems make the position information available within microseconds and therefore are optimum feedback systems in electric drive shafts.

By means of its extremely small dimensions and contactless measurement technology, BML allows for integration even in tight spaces or extreme ambient conditions. Expensive downtimes and service work are prevented from the outset by means of the wear-free operating principle; service-intensive encapsulation becomes unnecessary. Moreover, the contactless technology allows for extremely high measurement speeds. Accessories can be found on page 48.

Basic information and definitions can be found on page 54.

Magnetically Coded Position and Angle Measurement System Applications

Feedback system for pick and place

With the smallest design of an absolute magnetic position measurement sensor and the option of measuring perpendicular to the tape, the BML-S1H provides position feedback in highly dynamic applications even in extremely tight spaces.

- Optimum control quality by means of a high measurement rate and linearity
- Additional analog signal for highly dynamic controls
- Smallest metal housing reduces installation space

Fastest positioning with a high measurement rate and linearity. Small design reduces installation space.

Successfully used for years for to point mirrors towards the sun with high accuracy. With BML you achieve the best energy efficiency in concentrated solar power plants and parabolic trough power plants.

The BML enables ultimate control dynamics and high gain factors by means of smallest dimensions and high accuracy. Position with higher speeds and best precision.

S1F series

Magnetically coded posi-tion and angle measurement system

Applications Product overview Function principle S1H series

S2B/S2E/S1C series

Accessories

Universal milling machines use magnetically coded position and angle measurement systems BML for accurate positioning of the x, y, and z axes.

Magnetically Coded Position and Angle Measurement System **Product overvie**

High precision and extended lengths

Series	BML-S1HM3AA	BML-S1HM3CA
Resolution	110 µm	110 µm
System accuracy	±7 μm	±7 μm
Distance to tape	0.10.35 mm	0.10.35 mm
Linear tape	064 mm	0256 mm
Rotary tape (magnet ring) Ø 30 to 300 mm		
Interfaces		
Absolute SSI		
Absolute BiSS-C		
Incremental digital RS422 (TTL)		
Incremental digital HTL (as supply voltage 10 to 30 V)		
Incremental analog sin/cos (1 V_{ss})		
From page	18	18

No e de la constance de la constan	No and a state			in the	Magnetically coded posi- tion and angle measurement system Applications Product overview Function principle
BML-S1FQ	BML-S1FA	BML-S2B0-Q	BML-S2E0-Q	BML-S1C0-Q	S1H series
110 µm		5 to 50 µm	5 to 50 µm	100 to 2000 µm	S1F series
±10 µm	±10 μm	±50 μm	±100 μm	±100 μm	S2B/S2E/S1C series
0.10.35 mm	0.10.35 mm	0.12 mm	0.12 mm	0.12 mm	Accessories
048 m	048 m	048 m	048 m	048 m	Basic Information and Definitions
				•	
26	26	34	34	34	

Magnetically Coded Position and Angle Measurement System Function principle

	The high-precision magnetic position and angle measurement system BML consists of a sensor head and a magnetically encoded tape. The sensor head glides over the tape, which is encoded with magnetic poles, with a gap of up to 2 mm. Incremental systems make available the period changes of the tape encoded with alternating polarity as square- or sine-wave signals at the sensor output. The signals are processed using standard incremental inputs or sine-wave counter inputs of the electronic evaluation unit. With the absolute systems, the absolute position is processed as an SSI or BiSS signal at the standard interface of the electronic evaluation unit. Additionally, the absolute BML makes a real-time incremental signal available for evaluation for fast control applications with high sample rates.
Magnetically coded systems are highly accurate and real-time-capable	Displacement sensors with a magnetically encoded tape are very robust and operate highly accurately and particularly fast as a measuring system. Resolution is down to 1 μ m. Accuracy degrees of \pm 7 μ m can be achieved. The BML has no trouble with absolute measurement of travel speeds up to 5 m/s and incremental measurement up to 20 m/s. The absolute position values can be clocked with up to 10 MHz. The measured position value is available in fractions of microseconds. The controller receives the incremental position signal in real time.
Non-contact and highly robust, even for applications in rough conditions	In addition to the high accuracy and real-time capability, the BiSS interface allows for bidirectional communication including signal error detection. Since the measuring system operates magnetically, unlike optical systems it is highly immune to contamination such as oil, swarf, or dust and does not require encapsulation. Unlike with inductive systems, with the BML, metal swarf merely causes attenuation and does not register as a measurement variable. These properties make it excellently suited for use in harsh or dusty industrial environments.
System features of absolute systems	 Non-contact operating principle Resolution down to 1 μm System accuracy to ±7 μm Absolute signal SSI and BiSS-C Additional incremental signal analog sin/cos (1 V_{ss}) Gap between sensor and tape up to 0.35 mm

Operating principle of absolutely coded position and angle measurement system BML

System features of incremental systems

- Non-contact operating principle
- Resolution down to 1 µm
- Digital square-wave signals RS422 (TTL) or 10...30 V (HTL)
- Sinusoidal output signals 1 V_{ss}
- Gap between sensor and tape up to 2 mm
- Reference and limit switch function

Operating principle of incremental position and angle measurement system BML

Customizing

Do you have a very specific application?

Simply contact us! We offer you not just the standard product line, but also customized solutions. Some examples:

- Higher resolutions
- Other interpolation factors
- Higher travel speeds
- Larger read distances
- Special cables/plugs
- Special tape encodings
- Special designs/hubs

Magnetically coded position and angle measurement system Applications

Product overview Function principle

S1H series

S1F series

S2B/S2E/S1C series

Accessories

Basic Information and Definitions

Magnetically Coded Position and Angle Measurement System

S1H series

With the S1H sensor series, the magnetically coded position and angle measurement system BML provides high-resolution systems in robust metal housings.

By means of the absolute position detection, the position is immediately output even if the supply voltage fails and the system is switched on again, without a reference run. The particularly compact design and use parallel or perpendicular to the tape enables integration even under very tight installation conditions.

S1H

General data Applications SSI interface, BiSS-C interface

Tape, accessories

Digital display, CAM controller

1 µm absolute

Features

- Absolute measuring system
- Additional sin/cos analog signal for fast control applications
- ±7 µm system accuracy
- 1 µm resolution
- Smallest design
- Rugged metal housing
- Mounted parallel or perpendicular to tape

Ultrasonic welding

Exact position feedback for perfect results. By means of direct absolute measurement on the load, inaccuracies and tolerance shifts are reliably eliminated.

- Exact results by means of position detection right
- on the load support
- Compact design
- Ideal for short strokes
- Long-term reliability
- Wear-free due to non-contact measuring

Quickly holds the welding tool on point and with millimeter precision.

Magnetically coded position and angle measurement system

S1H series General data Applications

SSI interface, BiSS-C interface Tape, accessories Digital display, CAM controller

S1F series

S2B/S2E/S1C series

Accessories

Basic Information and Definitions

S1H Series SSI interface, BiSS-C interface

1 µm absolute

SSI interface

Synchronous serial data transmission suitable for controllers from different manufacturers.

Reliable signal transmission, even with cable lengths of up to 400 m between controller and transducer. This is guaranteed by the especially interference-proof RS485/422 differential drivers and receivers. Any interference signals are effectively suppressed.

The standard BML is factory-configured with the following settings for the position output, which cannot be modified later:

BML-S1H_-S6_C-M2A...: 16-bit,

- BML-S1H_-S6_C-M2C...: 18-bit,
- Binary or Gray-coded
- Rising or falling

SSIn Clock burst Clk T_{Clk} T_{Clk} T_{Cl

BiSS-C interface

BiSS-C is a synchronous serial data transmitter and suitable for controllers from different manufacturers.

Unlike SSI, the data transmission is bidirectional. In BiSS-C mode,

settings can be (continuously) configured on the sensor head without interrupting the sensor data.

BiSS-C supports CRC, warnings and error messages.

In addition to the SSI or BiSS signal, an analog real-time signal sin/cos 1 $V_{\rm pp}$ is output for highly dynamic control applications.

Additional analog real-time signal sin/cos 1 $V_{\rm ss}$

coded posi-tion and angle

Series	BML-S1H	system
Output signal	Absolute: SSI or BiSS-C, additional analog signal sin/cos 1 V_{ss}	2
Data format	16-bit (BML-S1HM3AA) or 18-bit (BML-S1HM2CA)	S1H series
Resolution	1/1.024 μm per LSB	General data
Part number	BML-S1H6_C-M3_A-DO-KA00,3-S284	Applications
Repeat accuracy	±1 increment	SSI interface, BiSS-C interface
Overall system accuracy	±7 μm	Tape, accessories
Supply voltage	5 V ±5%	Digital display,
Current consumption at 5 V operating voltage	< 50 mA + Controller current consumption, at 120 Ω load resistance	CAM controller
Max. read distance sensor/tape	0.35 mm (without cover strip)	0.45
Max. measuring length	64 mm (M3AA) or 256 mm (M3CA)	S1F series
Pole pitch, analog track	1 mm	S2B/S2E/S1C
Max. traverse speed	5 m/s (absolute)	series
Measurement rate for SSI	f _{STANDARD} = 50 kHz	
Operating temperature	–20+80 °C	Accessories
Storage temperature	−30+85 °C	
Housing material	Aluminum	Basic Information and
Degree of protection	IP 67	Definitions

All data applies in conjunction with tape BML-M02-A33... (see page 24)

Preferred models

BML-S1H1-S6QC-M3CA-D0-KA00,3-S284 (BML0393)

Approach direction parallel to the tape, SSI interface, rising binary code, 256 series length coding, pigtail 0.3 m with M12 plug BML-S1H2-S6QC-M3CA-D0-KA00,3-S284 (BML0394)

Approach direction perpendicular to the tape, SSI interface, rising binary code, 256 series length coding, pigtail 0.3 m with M12 plug

Attention!

1

2

Please read the instructions in the user's guide before designing, installing, and commissioning! www.balluff.de

Series BML-S1F Ordering code e.g. BCC Part number BCC M4* Material PUR with Description/additional data I Cable: I Bendir 15×D	J 2-A33-A3-M0009-A errite steel	Magnetic tapeengthfor BML-S1H with 256 mm measuring lengthBML039KBML-M02-A33-A3-M0028-C280 mm256 mmRubber ferriteStainless steel
Accessories M12 cont Series M12 cont Series BML-S11 Ordering code e.g. BCC Part number BCC M4 ⁻¹ Material PUR with Description/additional data Cable: Bendir 15×D	64 mastertrack 90±2	10+0.2 1.55±0.1
Series BML-S1F Ordering code e.g. BCC Part number BCC M4* Material PUR with Description/additional data I Cable: I Bendir 15×D	256 	mastertrack
Series BML-S1F Ordering code e.g. BCC Part number BCC M4* Material PUR with Description/additional data I Cable: I Bendir 15×D		
I lempe	COMY (5 m) C-0000-1A-169-PS0C08(molded plug, black Ø 4.9 mm, 12×0.08 mm ²	<u>,C009</u>
Available lengths/types 020 2 m		00 0 m

P	
STOR STOR	

BDD-AM 10-1-SSD	BDD-CC 08-1-SSD
Digital display	CAM controller
SSI interface	SSI interface
BAE0069	BAE006F
BDD-AM 10-1-SSD	BDD-CC 08-1-SSD
7 1/2-digit display with leading sign	8 programmable outputs
LED display, 14 mm-high red	8 directional switching points possible
7-segment digits	LED display, six 14-mm high red
Scalable measured values	7-segment digits
Variable decimal point setting	Switching points can be controlled by
Adjustable zero point	LEDs on front panel
Supply voltage 1032 V	300 switching points can be distributed
2 programmable relay outputs, each as	over up to 15 programs
limit switch/comparator	Adjustable top dead center/zero point
Cam	shift
2-point controller	Dynamic dead-time compensation for
1 configurable input	each individual switching point
External zeroing	■ Multiple BDD-CC 08 units can be wired
Retention of the display value	in parallel

Insulated DIN housing for mounting in front panel (clamp included in the scope of delivery)

Integrated transducer supply voltage

300 mA, 24 V

Housing depth 110 mm

789 456 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8 123 $\Box \bigcirc$

144

Housing depth 110 mm

Magnetically coded position and angle measurement system

S1H series General data Applications SSI interface, BiSS-C interface Tape, acces-sories Digital display, CAM controller

S1F series

S2B/S2E/S1C series

Accessories

Basic Information and Definitions

Series

Ordering code

Part number

Features

Magnetically Coded Position and Angle Measurement System

S1F series

With the S1F sensor heads, the magnetically coded position and angle measurement system BML provides high-resolution designs in robust metal housings. They also detect reference points on the tape. The S1F series can be used either parallel or perpendicular. The S1F series has an extremely compact design and is therefore easy to integrate in systems with restricted installation space.

15

S1F

General data Magnetic tape Magnet rings Technical selection guide

Features

- 1 µm resolution (digital)
- ±10 µm system accuracy permits high gain factors (analog)
- High repeat accuracy ±1 increment
- Reference signal
- Smallest design
- Rugged metal housing
- Mounted parallel or perpendicular to tape

Ordering example: sensor head with digital square-wave signal RS422

BML-S1F_-A62Z-M3_0-90-___ (with analog output signal sin/cos)

BML-S1F_-Q61_-M3_0-_0-_ __ (with digital square-wave signal RS422)

Approach		 	Min.	
direction	Resolution	Reference signal	Edge separation	Connection
1 Parallel 2 Perpen- dicular	D 1 μm E 2 μm F 5 μm G 10 μm	 None Individually or fixed-periodic Pole-periodic only with digital design Q61 	 D 0.12 μs E 0.29 μs F 0.48 μs G 1 μs H 2 μs K 4 μs L 8 μs N 16 μs P 24 μs 	KA02 PUR cable 2 m KA05 PUR cable 5 m KA10 PUR cable 10 m KA15 PUR cable 15 m KA20 PUR cable 20 m

Sensor connectors (e.g. SUB-D) are available on request. Better resolution available on request.

Preferred models

BML-S1F1-A62Z-M310-90-KA05 (BML02J1):

Installed parallel to tape, analog output sin/cos, with reference signal, 5 m cable

BML-S1F1-Q61D-M310-F0-KA05 (BML001A):

Installed parallel to tape, RS422 digital signal, with reference signal, 5-m cable, resolution 1 µm, edge separation 0.48 µs, max. travel speed 1 m/s

Relationship between resolution, edge separation and speed Selection guide, page 32

Compact and high-resolution

BML-S1FQ
Digital square-wave signals RS422
1 μm, 2 μm, 5 μm or 10 μm
BML-S1FQ61M3_00
RS422 to DIN 66259
±10 μm
5 V ±5%
< 50 mA + current consumption of the
controller (depending on internal resistance)
0.35 mm
20 m/s
–20+80 °C
Al
IP 67

BML-S1F_-A...

Sinusoidal analog signals sin/cos processing-dependent BML-S1F_-A62Z-M3_ 0-90- $1 V_{pp}$ ±10 µm 5 V ±5% < 50 mA + current consumption of the controller (depending on internal resistance) 0.35 mm 20 m/s -20...+80 °C Al IP 67

All specifications in conjunction with tape BML-...-I34... (see page 30).

Digital square-wave signals RS422

- RS422 square-wave signals in acc. with DIN 66259
- 90° phase shifted

Series

Output signal

Resolution

Part number

Supply voltage

voltage

Output voltage (A/B/Z)

Max. traverse speed Operating temperature

Degree of protection

Housing material

Overall system accuracy

Max. read distance sensor/tape

- Edge separation A/B corresponds to the resolution of the sensor head
- Differential signal
- Terminating resistor ≥ 120 ohms (integrated in the evaluation unit)

Sinusoidal analog signals 1 $V_{\rm pp}$

- Sinusoidal voltage signals with inversion
- Signal period 360°, electrical = 1000 µm
- Terminating resistor ≥ 120 ohms (integrated in the evaluation unit)

Caution!

Please read the instructions in the user's guide before designing, installing, and commissioning! www.balluff.de

Current consumption at 5 V operating

coded posi-tion and angle measurement system

S1H series

S1F series General data Magnetic tape Magnet Rings Technical selection guide

S2B/S2E/S1C series

Accessories

Basic Information and Definitions

Position of single reference point using example of

BML-M02-I34-A3-M0100-R0025/0000

Ordering example: Magnetic tape by the roll, pole width 1 mm

Magnetic tape mounting options

Sensor family F	Sensor family F	Sensor family F
BML002K	BML01KM	BML01EW
BML-M20-I30-A0-M072/054-R0	BML-M31-I30-A0-M075/060-R0	BML-M30-I30-A0-M122/090-R0
228	238	384
1 mm	1 mm	1 mm
No	No	No
Hard ferrite	Elastomer on steel ring with	Elastomer on steel ring with
	fit H7	fit H7

Basic Information and Definitions

Accessories

NSNSNS) ISI

Magnetically coded posi-tion and angle measurement system

S1H series S1F series General data Magnetic tape

Magnet Rings

Technical selection guide

S2B/S2E/S1C series

Series

Ordering code

Number of poles

With reference mark

Part number

Pole width

Material

The BML system enables precise adaptation to the relevant application. Balluff offers a technical selection guide that provides valuable assistance. For additional examples, see Basic Information and Definitions on page 54.

Selecting a suitable controller

Each sensor with a digital output signal has a characteristic minimum edge separation gap that the higher level controller must reliably detect. We therefore recommend selecting a controller with a counting frequency that is higher than the theoretically calculated counting frequency.

Each sensor with a digital output signal has a characteristic minimum Please use the following formula to select a suitable controller:

Counting frequency of the controller \geq

1 Min. edge separation

Example: If the sensor has a minimum edge separation gap of 1 μ s, then a controller capable of detecting at least 1 MHz must be selected based on the above formula.

Maximum travel speed, resolution and edge separation

The following tables show the relationship between the selected resolution of the sensor head, the minimum edge separation and the potential travel speed:

Min	. edge separation	V _{max} in accordance with Mechanical resolution	edge separation and reso	blution	
		D 1 µm	E 2 µm	F 5 µm	G 10 µm
D	0.12 µs	5 m/s	10 m/s	20 m/s	20 m/s
Е	0.29 µs	2 m/s	4 m/s	10 m/s	10 m/s
F	0.48 µs	1 m/s	2 m/s	5.41 m/s	5.41 m/s
G	1 µs	0.65 m/s	1.3 m/s	2.95 m/s	2.95 m/s
н	2 µs	0.3 m/s	0.6 m/s	1.54 m/s	1.54 m/s
κ	4 µs	0.15 m/s	0.3 m/s	0.79 m/s	0.79 m/s
L	8 µs	0.075 m/s	0.15 m/s	0.34 m/s	0.34 m/s
Ν	16 µs	0.039 m/s	0.079 m/s	0.19 m/s	0.19 m/s
Ρ	24 µs	0.026 m/s	0.052 m/s	0.13 m/s	0.13 m/s

Table 1: Selection guide for maximum travel speed of the S1F series

Pulses/revolution with 4-fold evaluation

Ø of magnet ring, outside

Rotary applications

The BML system allows precision adaptation of rotary tapes to the relevant application.

Balluff offers a technical selection guide for rotary systems that provides valuable assistance.

72 mm

228000

114000

45600

22800

BML002K

Determining the pulses per rotation

The number of required pulses per rotation varies depending on the application. It determines the resolution of the sensor head and the diameter of the magnet ring.

122 mm

384000

192000

76800

38400

BML01EW

Magnetically coded position and angle measurement system

S1H series

Technical selection guide

S2B/S2E/S1C series

Accessories

Basic Information and Definitions

Sensor head resolution

Ordering code

 $\mathbf{D} = 1 \ \mu m$

E = 2 µm

 $\mathbf{F} = 5 \, \mu m$

G = 10 µm

Maximum speed The BML system enables the detection of rotary movements. The speed and the diameter of the magnetic ring determine the speed of the ring on the sensor head.

Table 2: Selection guide for magnet rings from the S1F series

The maximum travel speed that the sensor can still identify depends on the resolution and the edge separation of the sensor head. Resolution and edge separation can be selected. A maximum speed is then calculated using the following formula:

Max. speed (rpm) =

 $\frac{60 \times \text{max. travel speed (m/s)}}{\pi \times \text{magnet ring diameter (m)}}$

Refer to Table 1 for the maximum travel speed. When selecting a maximum speed for the application, we recommend using a value 10% lower than this value.

Example:

75 mm

238000

119000

47600

23800

BML01KM

You are using a BML-S1F sensor with a resolution of 5 μ m (F) and a minimum edge separation of 1 μ s (G). For this sensor, Table 1 gives a maximum travel speed of 2.95 m/s.

If the magnet ring diameter is 72 mm = 0.072 m, a speed of 783 rpm can be achieved according to the formula. With consideration for the reduced value, the speed should not exceed 705 rpm.

Magnetically Coded Position and Angle Measurement System

S2B/S2E/S1C series

With the S2B/S2E/S1C sensor heads, the magnetically coded position and angle measurement system BML provides three systems for optimum adaptation to your measuring task.

Resolution and accuracy can be appropriately selected depending on the application. Integration of reference points is also possible. All three systems have a compact design and the same dimensions throughout the series, making them extremely versatile to integrate.

BALLUFF A CE

S2B/S2E

IS ISUSNSNS

42

44

45

47

S1C General data Magnetic tape Magnet rings Technical selection guide

- 5 µm resolution
- System accuracy to ±50 µm
- High repeat accuracy ±1 increment
- 20 m/s maximum travel speed
- Digital square-wave signals RS422 or 10 to 30 V
- Two freely positionable limit switches
- Reference signal
- LED display for reference signal

Ordering example: sensor head

System selection

Relationship between resolution, edge separation and speed Selection guide, see page 41

	M40 M40 Output voltage	Resolution	Reference signal	Limit switch	Min. edge separation	Connection
5 1030 V 6 5 V	 Digital square- wave signal RS422 Level same as supply voltage (only for 1030 V) 	F 5 μm G 10 μm H 25 μm K 50 μm	 None Individually or fixed-periodic Pole-periodic 	0 Nolimit switch3 Two limitswitches(including1 setof magnets)	 D 0.12 μs E 0.29 μs F 0.48 μs G 1 μs H 2 μs K 4 μs L 8 μs N 16 μs P 24 μs 	KA02 PUR cable 2 mKA05 PUR cable 5 mKA10 PUR cable 10 mKA15 PUR cable 15 mKA20 PUR cable 20 m

Sensor connectors (e.g. SUB-D or M12 connectors) are available on request.

Preferred models

BML-S2B0-Q53F-M410-D0-KA05 (BML0211)

Digital signal, 10 to 30 V, with reference signal, 5 m cable, resolution 5 µm, edge separation 0.12 µs, max. travel speed 20 m/s

BML S2E0-Q53G-M410-P0-KA05 (BML00JC)

Digital signal, 10 to 30 V, with reference signal, 5 m cable, resolution 10 µm, edge separation 24 µs, max. travel speed 26 cm/s

BML S2E0-Q61F-M410-G0-KA05 (BML001E)

Digital signal, 5 V, with reference signal, 5 m cable, resolution 5 µm, edge separation 1 µs, max. travel speed 3.25 m/s

universal

Series

Output signal

Resolution

Part number

Supply voltage

5 V supply voltage

Max. traverse speed

Degree of protection

Housing material

Operating temperature

Output voltage (A/B/Z)

Overall system accuracy

Current consumption at

Current consumption at

10 to 30 V supply voltage

Max. read distance sensor/tape

Digital square-wave signals

10...30 V or 5 V ±5%

5 μm, 10 μm, 25 μm or 50 μm

BML-S2B0-Q___-M4__-_0-_

RS422 to DIN 66259 or same as

operating voltage 10...30 V (without A/B/Z)

controller (depending on internal resistance)

controller (depending on internal resistance)

< 50 mA + current consumption of the

< 40 mA + current consumption of the

BML-S2B0-...

±50 µm

2 mm

20 m/s

PBT

IP 67

-20...+80 °C

BML-S2E0-...

Digital square-wave signals 5 µm, 10 µm, 25 µm or 50 µm BML-S2E0-Q___M4__-O-___ RS422 to DIN 66259 or same as operating voltage 10...30 V (without A/B/Z) ±100 µm 10...30 V or 5 V ±5% < 50 mA + current consumption of the controller (depending on internal resistance) < 40 mA + current consumption of the controller (depending on internal resistance) 2 mm 20 m/s -20...+80 °C

Magnetically coded position and angle measurement system

S1H series

S1F series

S2B/S2E series General data Magnetic tape Magnet Rings Technical selection guide

S1C series General data Magnetic tape Magnet Rings Technical selection guide

Accessories

Basic Information and Definitions

All specifications in conjunction with tape BML-...-145-... (BML-S2B0...) or BML-...-146-... (BML-S2E0...) at a read distance of 1 mm (see page 38).

PBT

IP 67

Digital square-wave signals RS422

- RS422 square-wave signals in acc. with DIN 66259
- 90° phase shifted
- Edge separation A/B corresponds to the resolution of the sensor head
- Differential signal (BML-S1A...)
- Terminating resistor \geq 120 ohms (integrated in the evaluation unit)

Caution!

Please read the instructions in the user's guide before designing, installing, and commissioning! www.balluff.de

Position of single reference point using example of

BML-M02-I45-A0-M0100-R0025/0000

Typical position of reference points in sensor head

S2B/S2E

Fabricated magnetic tape, pole width 5 mm

Ordering example: Magnetic tape by the roll, pole width 5 mm

Magnetic tape mounting options

Series	Sensor range B/C/E	Sensor range B/C/E	Sensor range B/C/E	Mag
Ordering code	BML002T	BML002R	BML002P	Mag Tech
Part number	BML-M22-I40-A0-M031/016-R0	BML-M21-I40-A0-M048/006-R0	BML-M20-I40-A0-M072/054-R1	selec
Number of poles	20	32	46	
Pole width	5 mm	5 mm	5 mm	S1C
With reference mark	no	no	yes	Gener
Material	Hard ferrite/aluminum	Hard ferrite/aluminum	Hard ferrite	Magn
				Magn

54

7

Magnetically coded position and angle

tion and angle measurement system

S1H series

S1F series

S2B/S2E series General data Magnetic tape

Magnet Rings Technical selection guide

S1C series General data Magnetic tape Magnet Rings Technical selection guide

Accessories

Basic Information and Definitions

Special solutions for a range of applications

Magnetic rings are suitable for all types of applications where the monitoring of rotary movements is required. Due to the high resolution, synchronous run monitoring is just as easy to implement as precision angle positioning.

Balluff offers a range of standard rotary tapes that are suitable for most types of applications. Due to the wide variety of different machine applications, special dimensions and magnetic configurations are available on request. Even linear tapes have been used successfully in rotary applications. For example, the magnetic tape can be attached to the shaft of a solar panel unit to monitor whether the

panel is aligned perfectly with the sun. Balluff also offers prefabricated magnetic tapes with holes for convenient, simplified installation.

Series	Sensor range B/C/E	Sensor range B/C/E	Sensor range B/C/E
Ordering code	BML002L	BML002M	BML002N
Part number	BML-M20-I40-A0-M031/021-R0	BML-M20-I40-A0- M048/037-R0	BML-M20-I40-A0-M072/054-R0
Number of poles	20	32	46
Pole width	5 mm	5 mm	5 mm
With reference mark	no	no	no
Material	Hard ferrite	Hard ferrite	Hard ferrite

The BML system allows precision adaptation to the relevant application. Balluff offers a technical selection guide that provides valuable assistance. For additional examples, see Basic Information and Definitions on page 54.

Selecting a suitable controller

Each sensor with a digital output signal has a characteristic minimum edge separation gap that the higher-level controller must reliably detect. We therefore recommend selecting a controller with a counting frequency that is higher than the theoretically calculated counting frequency.

Maximum travel speed, resolution and edge separation

The following tables show the relationship between the selected resolution of the sensor head, the minimum edge separation and the potential travel speed:

Min	. edge separation	V _{max} in accordance with edge separation and resolution Mechanical resolution				Technical selection gui
		F 5 µm	G 10 µm	H 25 µm	K 50 µm	
D	0.12 µs	20 m/s	20 m/s	20 m/s	20 m/s	S1C series
Е	0.29 µs	10 m/s	20 m/s	20 m/s	20 m/s	General data Magnetic tap
F	0.48 µs	5 m/s	10 m/s	20 m/s	20 m/s	Magnet Rings
G	1 µs	3.25 m/s	6.5 m/s	14.75 m/s	14.75 m/s	Technical
н	2 µs	1.5 m/s	3 m/s	7.7 m/s	7.7 m/s	selection guid
κ	4 µs	0.75 m/s	1.5 m/s	3.95 m/s	3.95 m/s	
L	8 µs	0.375 m/s	0.75 m/s	1.7 m/s	1.7 m/s	Accessories
Ν	16 µs	0.195 m/s	0.395 m/s	0.95 m/s	0.95 m/s	
Ρ	24 µs	0.13 m/s	0.26 m/s	0.65 m/s	0.65 m/s	Basic Information

Table 1: Selection guide for maximum travel speed of the S2B/S2E series

Rotary applications

The BML system allows precision adaptation of rotary tapes to the relevant application.

Balluff offers a technical selection guide for rotary systems that provides valuable assistance.

Determining the pulses per rotation

The number of required pulses per rotation varies depending on the application. It determines the resolution of the sensor head and the diameter of the magnet ring.

Please use the following formula to select a suitable controller:

Example: If the sensor has a minimum edge separation of 1 µs, then

a controller capable of detecting at least 1 MHz must be selected

Counting frequency of the controller \geq

based on the above formula.

1

Min. edge separation

Sensor head resolution	Pulses/revolution with 4-fold evaluation			
	Ø of magnet ring, outside			
	31 mm	49 mm	72 mm	
Ordering	BML002T	BML002R	BML002P	
code	BML002L	BML002M	BML002N	
F = 5 μm	20000	32000	46000	
G = 10 μm	10000	16000	23000	
H = 25 μm	4000	6400	9200	
K = 50 μm	2000	3200	4600	

Table 2: Selection guide for magnetic rings from the S2B/S2E series

Maximum speed

The BML system enables the detection of rotary movements. The speed and the diameter of the magnetic ring determine the speed of the ring on the sensor head.

The maximum travel speed that the sensor can still identify depends on the resolution and the edge separation of the sensor head. Resolution and edge separation can be selected. A maximum speed is then calculated using the following formula:

60 × max. travel speed (m/s) Max. speed (rpm) = $\pi \times$ magnet ring diameter (m) Refer to Table 1 for the maximum travel speed. When selecting a maximum speed for the application, we recommend using a value 10% lower than this value.

Example:

You are using a BML-S2B sensor with a resolution of 5 µm (F) and a minimum edge separation of 1µs (G). For this sensor, Table 1 gives a maximum travel speed of 3.25 m/s.

If the magnetic ring diameter is 48 mm = 0.048 m, a speed of 1293 rpm can be achieved using the formula. With consideration for the reduced value, the speed should not exceed 1164 rpm.

Magnetically coded posi-tion and angle

measurement system

S1H series S1F series

S2B/S2E series General data Magnetic tape Magnet Rings

quide

ta ape ngs uide

on and Definitions

cost-effective

Features

- 0.1 mm resolution
- High repeat accuracy ±1 increment
- 10 m/s maximum travel speed
- Gap between sensor and tape up to 2 mm
- Digital square wave signals, output voltage 10 to 30 V (HTL)
- Cable connection
- 10 to 30 V DC supply voltage

System selection Relationship between resolution, edge separation and speed Selection guide, see page 47.

Ordering example: sensor head

BML-S1C0-Q53M4000-KA	<u> </u>		
Resolution	Max. edge separation	Con	nection
L 0.1 mm	M 10 µs	KA02	PUR cable 2 m
M 0.2 mm	R 100 μs	KA05	PUR cable 5 m
N 0.5 mm		KA10	PUR cable 10 m
P 1.0 mm		KA15	PUR cable 15 m
R 2.0 mm		KA20	PUR cable 20 m

Sensor connectors (e.g. SUB-D or M12 connectors) are available on request.

Preferred type

BML S1C0-Q53L-M400-M0-KA05 (BML0034)

Digital signal, 10 to 30 V, 5 m cable, resolution 0.1 mm, edge separation 10 µs, max. travel speed up to 8 m/s

Dauer G

	*	•	STH series
Series	BML-S1C0	BMF 12M	S1F series
Output signal	Digital square-wave signals	PNP/NPN normally open	011 361163
Resolution	5 μm, 10 μm, 25 μm or 50 μm	1 switching operation per pole	S2B/S2E series
Ordering code		BMF0022	General data
Part number	BML-S1C0-Q53M4000-KA	BMF 12M-PS-D-2-S4 (PNP normally open)	Magnetic tape
Ordering code		BMF0021	Magnet Rings
Part number		BMF 12M-NS-D-2-S4 (NPN normally open)	Technical
Output voltage (A/B)	Same as operating voltage 1030 V	Supply voltage –U _d	selection guide
Overall system accuracy	±100 μm		S1C series
Supply voltage	1030 V	1030 V DC	General data
Voltage drop U _d		≦ 3.15 V	Magnetic tape
Current consumption at	< 40 mA + current consumption of the	200 mA	Magnet Rings
10 to 30 V supply voltage	controller (depending on internal resistance)		Technical
Max. read distance sensor/tape	2 mm	2 mm	selection guide
Max. travel speed	10 m/s	7 kHz	Accessories
Operating temperature	–20+80 °C	–25+85 °C	A000300103
Housing material	PBT	Brass-coated	Basic
Degree of protection	IP 67	IP 67	Information and

All data applies in conjunction with tape BML-...-I46-... at a read distance of 1 mm (see page 44).

Digital square-wave signals HTL

- Square-wave signals HTL
- 90° phase-shifted
- Edge separation A/B corresponds to the resolution of the sensor head
- Terminating resistor ≥ 120 ohms (integrated in the evaluation unit)

Magnetically coded posi-tion and angle measurement system

S1H series

on and Definitions

Ordering example: Magnetic tape by the roll, pole width 5 mm

5 m
10 m
24 m
48 m

Magnetic tape mounting options

(also in magnetizable material)

BMF 12M-PS-D-2-S4 Speed monitoring in rotary applications: Simply more cost-effective.

Designed for the B/C/E sensor family, the magnet rings and magnetic tapes shown here allow you to measure speed by means of switching magnetic field sensors from the BMF series. With its standard M12 thread, the BMF 12M-PS-D-2-S4 sensor can be installed in a wide range of applications. and can be installed as close as 2 mm from the magnet. A pulse signal that reflects the rotary speed is present at the switching output. The sensor can detect frequencies up to 7 kHz, therefore speeds of up to about 20,000 rpm are possible, depending on the selected tape.

		system
		S1H series
Sensor range B/C/E	Sensor range B/C/E	
BML002T	BML002R	S1F series
BML-M22-I40-A0-M031/016-R0	BML-M21-I40-A0-M048/006-R0	
20	30	S2B/S2E series

Ordering code	BML002T	BML002R	S1F
Part number	BML-M22-I40-A0-M031/016-R0	BML-M21-I40-A0-M048/006-R0	
Number of poles	20	32	S2B
Pole width	5 mm	5 mm	Gen
With reference mark	no	no	Mag
Material	Hard ferrite/aluminum	Hard ferrite/aluminum	Mag Tech
			1001

Magnetically coded position and angle measurement system

S2B/S2E series General data Magnetic tape Magnet Rings Technical selection guide

S1C series General data Magnetic tape Magnet Rings

Technical selection guide

Accessories

Basic Information and Definitions

Special solutions for a range of applications

Magnetic rings are suitable for all types of application where the monitoring of rotary movements is required. Due to the high resolution, synchronous run monitoring is just as easy to implement as precision angle positioning.

Balluff offers a range of standard rotary tapes that are suitable for most types of application. Due to the wide variety of different machine applications, special dimensions and magnetic configurations are available on request. Even linear tapes have been used successfully in rotary applications. For example, the magnetic tape can be attached to the shaft of a solar panel unit to monitor whether the panel is aligned perfectly with the sun. Balluff also offers prefabricated magnetic tapes with holes for convenient, simplified installation.

Series

Series	Sensor range B/C/E	Sensor range B/C/E	Sensor range B/C/E
Ordering code	BML002L	BML002M	BML002N
Part number	BML-M20-I40-A0-M031/021-R0	BML-M20-I40-A0-M048/037-R0	BML-M20-I40-A0-M072/054-R0
Number of poles	20	32	46
Pole width	5 mm	5 mm	5 mm
With reference mark	no	no	no
Material	Hard ferrite	Hard ferrite	Hard ferrite

We offer custom solutions. Simply contact us.

The BML system allows precision adaptation to the relevant application. Balluff offers a technical selection guide that provides valuable assistance. For additional examples, see Basic Information and Definitions on page 54.

Selecting a suitable controller

Each sensor with a digital output signal has a characteristic minimum edge separation gap that the higher-level controller must reliably detect. We therefore recommend selecting a controller with a counting frequency that is higher than the theoretically calculated counting frequency.

Maximum travel speed, resolution and edge separation

The following tables show the relationship between the selected resolution of the sensor head, the minimum edge separation and the potential travel speed:

; Series Technical selection guide

Min	. edge separation	V _{max} in accordance with edge separation and resolution Mechanical resolution			Technical selection guide		
	•	L 100 µm	M 200 µm	N 500 µm	Ρ 1000 μm	R 2000 µm	S1C series
Μ	10 µs	8 m/s	10 m/s	10 m/s	10 m/s	10 m/s	General data
R	100 µs	0.9 m/s	1.8 m/s	4.2 m/s	8.8 m/s	10 m/s	Magnetic tape

Table 1: Selection guide for maximum travel speed of the S1C series

Rotary applications

The BML system allows precision adaptation of rotary tapes to the relevant application.

Balluff offers a technical selection guide for rotary systems that provides valuable assistance.

Determining the pulses per rotation

The number of required pulses per rotation varies depending on the application. It determines the resolution of the sensor head and the diameter of the magnet ring.

Sensor head resolution	Pulses/revolution with 4-fold evaluation		
	Ø of magnet ring, outside		
	31 mm	49 mm	72 mm
Ordering code	BML002T	BML002R	BML002N
	BML002L	BML002M	
L = 100 μm	1000	1600	2300
M = 200 μm	500	800	1150
N = 500 μm	200	320	460
P = 1000 μm	100	160	230
R = 2000 µm	50	80	115

Table 2: Selection guide for magnetic rings from the S1C series

Maximum speed

The BML system enables the detection of rotary movements. The speed and the diameter of the magnetic ring determine the speed of the ring on the sensor head.

The maximum travel speed that the sensor can still identify depends on the resolution and the edge separation of the sensor head. Resolution and edge separation can be selected. A maximum speed is then calculated using the following formula:

 $60 \times \text{max}$. travel speed (m/s) Max. speed (rpm) = $\pi \times$ magnet ring diameter (m)

Refer to Table 1 for the maximum travel speed. When selecting a maximum speed for the application, we recommend using a value 10% lower than this value.

Example:

You are using a BML-S1C sensor with a resolution of 100 µm (L) and a minimum edge separation of 10 µs (M). For this sensor, Table 1 gives a maximum travel speed of 8 m/s.

If the magnet ring diameter is 48 mm = 0.048 m, a speed of 3183 rpm can be achieved according to the formula. With consideration for the reduced value, the speed should not exceed 2865 rpm.

coded posi-tion and angle

measurement system

S1H series

S1F series

S2B/S2E series

General data

Magnetic tape Magnet Rings

Magnet Rings Technical selection guide Accessories

Basic Information and

Definitions

Please use the following formula to select a suitable controller:

Counting frequency of the controller \geq

1 Min. edge separation

Example: The sensor has a minimum edge separation of 1µs. Then the outcome, according to the formula above, is a controller that can detect at least 1 MHz.

Magnetically Coded Position and Angle Measurement System

Accessories

Counters and displays are available for all series to integrate the sensor systems perfectly into your application.

The range of sensor guides enables you to integrate robust, highprecision measurement systems even where there is no optimum guide.

Ų Ŷ *

Accessories Counter-Displays Sensor guide

Magnetically Coded Position and Angle Measurement System: Measuring and displaying speeds

Speed detection of shafts and spindles as well as simple rotary encoder tasks can be optimally implemented with the combination of BML, BDD, and the magnet ring tapes.

Series	
Interface	
Ordening code	
Ordering code	
Part number	
Ordering code	
Part number	
Ordering code	
Part number	
Functions	
Features	
Use	

* Power supply unit for connecting to 115 V/230 V, for example, BAE0001 or BAE00EN on page 328.

F 🗲 🔺 E

www.balluff.com

The sensor guide consists of an aluminum rail that retains the magnetic tape and a carriage with runners that guides the sensor head accurately. A standard control arm is used for the mechanical connection.

Features

- Customized lengths
- Easily attached by directly screwing on or using mounting elements
- \blacksquare Rails can be mounted side by side and elements disassembled
- Connection of drag chains possible
- Flat design, minimal space requirements
- Low costs
- Runners need no lubrication, thus no maintenance costs
- Minimum stock-keeping, since the universal concept works for various sensor heads
- Mounting aid for easy installation of the magnetic tape

You may cover the magnetic tape with a stainless steel cover strip to protect it from damage caused by chips or chemicals. Note that the permissible air gap between the sensor head and tape is reduced by the thickness of the cover strip with adhesive film (0.15 mm).

- Cover strip and magnetic tape can be ordered together in matching lengths (see tapes on page 30, 38, or 44).
- Cover strip by the roll can be ordered in 4 defined lengths.

Accessories	Joint rod	
	for BML-C01, BML-C02	
Ordering code	e.g. BAM000P (100 mm)	
Part number	BTL2-GS10A	
Use	For connecting the sliding carriage to the	
	machine	

Sensor guide

Ordering code

Part number

Features

for sliding carriage BML-C01, BML-C02

Lateral groove for alternate mounting

Maintenance-free dry operation

Guide rail

BML-R01-M_

e.g. BAM04N4 (3 m)

Anodized aluminum

Mounting holes

using brackets

Lubricant-free

Mountable side by side

Suitable for all linear tapes

Sliding carriage

BAM01MF

Aluminum

Lubricant-free

Fully mounted with runners

Connection for drag chains

Maintenance-free dry operation

Connection for joint rod

BML-C01

Sliding carriage

BAM01MH

Aluminum

Lubricant-free

BML-C02

for sensors BML-S1F

Fully mounted with runners

Connection for drag chains

Maintenance-free dry operation

Connection for joint rod

Magnetically coded position and angle measurement system

S1H series

S1F series

S2B/S2E/S1C series

Accessories Counter-Displays Sensor guide

Basic Information and Definitions

for sensors BML-S2B, BML-S2E, BML-S1C

Adhesive strip

Magnetically Coded Position and Angle Measurement System

Basic information and definitions Definitions Examples and help for selecting the system

56

58

Basic Information and Definitions **Definitions**

 System accuracy
 The accuracy of the sensor head depends largely on mechanical manufacturing tolerances and component tolerances; the accuracy of the tape is determined by the material quality and the magnetization grade.

 The overall system accuracy or linearity class

describes the deviations of the measured value from the real actual value. It contains the position deviations within any meter of the measurement section (or, when rotary: a rotation).

4x evaluation

With 4-fold evaluation, the controller counts every 4 edge changes within a signal period. A signal period = 4x selected resolution.

Example:

Sensor head 1 μm resolution, magnet ring with 384 poles (1 mm).

- 4 edges (each 1 µm) per signal cycle
- $= 4 \ \mu m$ period length
- = 250 periods per pin
- = 96,000 periods per 360° (384,000 pulses per 360°)

PER = a signal period

EDG = Edge separation

± 10 µm

Basic Information and Definitions **Definitions**

Edge separation	With 4-fold evaluation, the following applies (each edge is counted):		
	Period length = $\frac{\text{Counting frequency}}{4}$		
	Counting frequency of the controller $\geq \frac{1}{\text{Min. edge separation}}$		
	Example: Edge separation = 1 µs Counting frequency = 1 MHz Period length = 250 kHz		
	Important! The controller/display must be able to count the minimum time- based edge separations shown in the tables (note the counting frequency of your controller). The minimum edge separation may occur even when the system is at rest due to the internal interpolation procedure. Always select the next higher travel speed or the next faster minimum edge separation; otherwise, during the evaluation by the controller, errors can arise in the position determination.		
Repeat accuracy	Repeat accuracy is the value resulting when moving to the same po- sition from the same direction under unchanging ambient conditions.		
Incremental	After the system is switched on, the measured value currently avail- able is not defined. A reference run to a defined point, a reference point, is necessary in order to obtain a position value. The position value is calculated by adding or subtracting single identical incre- ments from the reference point.		
Absolute	The measured value for the current position is available immediately after the system is switched on. Each position, e.g. a measurement section, is assigned an absolute, coded digital signal or an analog value. A reference run is not required.		
Temperature coefficient	The temperature coefficient indicates the relative change in length as temperature changes. This means that temperature factors change the measured value by the indicated amount.		
Sampling rate	The measurement rate is the frequency at which the output posi- tion information is updated. It can be the same as the number of measurements per second. A high sampling rate for rapidly changing positions is important when the process is time-critical.		

Magnetically coded position and angle measurement system

S1H series

S1F series

S2B/S2E/S1C series

Accessories

Basic Information and Definitions Definitions

Examples and help for selecting the system

Basic Information and Definitions Examples and help for selecting the system

Tape, pole width

On the magnetic tape, there is a track with alternating magnetic north and south poles. In some variants, a second track with reference points is available.

The magnetic tape exists in 1 mm (BML-M...-I3_-...) and 5 mm (BML-M...-I4_-...) pole width.

5 mm			
	R		

The magnetic tape exists in various versions. You therefore have to take care that the magnetic tape and sensor head fit together.

The magnetic period of the tape is interpolated by the sensor head with integrated interpolator with up to 10-bit (factor 1000).

+ larger field strength

+ better accuracy

Interpolation

magnetic tape

Reference point function	For each incremental encoder system, the reference position is es- sential as a starting point for the counting. How the reference point is determined depends on the sensor head, the magnetic tape and the controller itself. Advantages of the pole-periodic and fixed-periodic tapes: The tape can be bought in great lengths and cut to size by the customer. The reference point functions are possible with linear and with round tapes (rings, only with sensor head BML-S2B/E, BML-S1F).
Relationship between resolution, speed and edge separation (examples)	 Sensor head design for controller with 4-fold evaluation: Example 1: Resolution needed: F = 5 µm In table 1 on page 41 Select column 1. Max. travel speed = 7 m/s Select line 2 = 10 m/s. → Edge separation E = 0.29 µs
	 Example 2: Resolution needed: G = 10 µm In table 1 on page 41 Select column 2. Max. counting frequency of the controller = 0.5 m/s edge separation H = 2 µs Select line 5. → Maximum possible travel speed: 3 m/s

Example 3: Max. travel speed = 2 m/s Controller detects min. edge separation M = 10 μ s In table 1 on page 47 Select line 1.

- Select column 1.
 - → Maximum possible resolution L = 100 μ m (BML-S1C)

Edge separation (= pulse width) min. edge separation [µs]		Controller identifies at least Max. counting frequency [kHz] ¹⁾	Controller has the min. scan rate [kHz]	
D	0.12	8,333	16,667	
E	0.29	3,448	6,897	
F	0.48	2,083	4,167	
G	1	1,000	2,000	
Н	2	500	1,000	
К	4	250	500	
L	8	125	250	
Μ	10	100	200	
Ν	16	63	125	
Р	24	42	83	
R	100	10	20	

Table 1: Relationship of edge separation – counting frequency ¹⁾ Signal period = $1/4 \times$ counting frequency

Magnetically coded position and angle measurement system

S1H series

S1F series

S2B/S2E/S1C series

Accessories

Basic Information and Definitions Definitions Examples and

Examples and help for selecting the system

Basic Information and Definitions Examples and help for selecting the system

Single or double reference signal

System consisting of: BML-S_B/E...-M41_-... or BML-S1F...-M31... Tape BML-M...-I__-...-R____/0000 (single signal) or BML-M...-I__-...-R____/(double signal)

A sensor head with an additional reference point sensor can output a reference point signal as soon as it reaches the magnetically encoded reference point on the second track of the tape. No external reference switch is necessary.

Single reference point magnetic tape type BML-M...-R____/0000

For the magnetic tape with single reference point, the reference point may be integrated as desired at any location. To determine the exact absolute position, the reference run must cover the entire length of the tape up to the reference point.

Ordering example for the tape shown below: BML-M02-I45-A0-M0100-R0040/0000

	R
40 cm	Visually marked reference point position
_	100 cm
	Total length

Magnetic tape with two reference points, type BML-M...-R____/___

For the magnetic tape with two reference points, the reference point may be integrated as desired at any location. To determine the exact position, the reference run must cover the entire length of the tape up to the external selection switch. The external selection switch decides on the use of Z signals.

Ordering example for the tape shown below: BML-M02-I46-A0-M0200-R0050/0120

Fixed-periodic reference signals

System consisting of: BML-S_B/E...-M41_-... or BML-S1F...-M31... Tape BML-M...-I__-...-C0006/____

The sensor head with an additional reference point sensor can also be combined with a magnetic tape with fixed-periodic reference points. Here the reference points are integrated across the entire length of the tape at certain constant intervals, such as every 10 cm. To determine the exact position, the reference run must go to the external selection switch.

Magnetic tape with fixed-periodic reference points, type BML-M...-C0006/____ For magnetic tapes with fixed-periodic reference points, the reference points are integrated across the entire length of the tape at certain constant intervals, such as every 20 cm. To determine the exact position, the reference run must extend to the external selection switch, which decides on the use of the Z signals.

Ordering example for the tape shown below: BML-M02-I34-A0-M0100-C0006/0020

R		R R		R	R
6 cm	20 cm	20 cm	20 cm	20 cm	
-	Total ler	igth 100 c	m Ref	erence points	

Magnetically coded position and angle measurement system

S1H series

S1F series

S2B/S2E/S1C series

Accessories

Basic Information and Definitions Definitions Examples and help for

help for selecting the system

Basic Information and Definitions Examples and help for selecting the system

No or pole-periodic reference signal

System consisting of: BML-S_B/C/E...-M40_-... (none) or BML-S_B/E...-M42_-... (pole-periodic) or BML-S1F...-M30... or BML-S1F...-M32... Tape BML-M...-I__-...-R0000

In the simplest position measuring system, the sensor head scans the magnetic periods with the incremental sensors. On the tape, there is a track with magnetic north and south poles. The position is determined by the controller by adding up the counted increments. With a pole-periodic reference point signal, with each magnetic pole, a reference point signal is output. In this case, an external reference switch has to be set on the selected reference point signal. The controller precisely evaluates the reference position when the switch and the reference point signal of the sensing head are active.

Pole-periodic magnetic tape, type BML-M...-R0000 The pole-periodic magnetic tape has alternating magnetic north and south poles, but no integrated reference point.

Ordering example for the tape shown below: BML-M02-I34-A0-M3500-R0000

Total length

Maximum speed

The BML system enables the detection of rotary movements. The speed and the diameter of the magnetic ring determine the speed of the ring on the sensor head. The maximum travel speed that the sensor can still identify depends on the resolution and the edge separation of the sensor head. Resolution and edge separation can be selected. A maximum speed is then calculated using the following formula:

Max. speed [rpm] = $\frac{60 \times \text{max. travel speed [m/s]}}{\pi \times \text{Magnetic ring diameter [m]}}$

For the maximum travel speed and minimum edge separation, see table 1 on page 41 Recommendation: max. speed 10 % less than determined speed value.

Max.	RPM						
travel	Outer diameter						
speed	31 mm	49 mm	72 mm	75.4 mm	122 mm		
20 m/s	12,322	7795	5,305	5,066	3,131		
14.75 m/s	9,087	5,749	3,913	3,736	2,309		
10 m/s	6,161	3,898	2,653	2,533	1,565		
8.8 m/s	5,422	3,430	2,334	2,229	1,378		
8 m/s	4,929	3,118	2,122	2026	1,252		
7.7 m/s	4,744	3,001	2042	1,950	1,205		
6.5 m/s	4,005	2,533	1,724	1,646	1018		
5 m/s	3,080	1949	1,326	1,266	783		
4.2 m/s	2,588	1,637	1,114	1,064	657		
3.95 m/s	2,434	1,540	1,048	1,001	618		
3.25 m/s	2,002	1267 ¹⁾	862	823	509		
3 m/s	1,848	1169	796	760	470		
1.8 m/s	1,109	702	477	456	282		
1.7 m/s	1,047	663	451	431	266		
1.5 m/s	924	585	398	380	235		
0.95 m/s	585	370	252	241	149		
0.9 m/s	554	351	239	228	141		
0.75 m/s	462	292	199	190	117		
0.65 m/s	400	253	172	165	102		
0.395 m/s	243	154	105	100	62		
0.375 m/s	231	146	99	95	59		
0.26 m/s	160	101	69	66	41		
0.195 m/s	120	76	52	49	31		
0.13 m/s	80	51	34	33	20		

¹⁾ see example below

Table 2: Maximum speed of rotary tape (magnetic ring)

Example

Sensor head BML-S2B... with a resolution of 5 μ m (F) and a min. edge separation of 1 μ s (G). From table 1 on page 41 for this sensor head, there is a max. travel speed of 3.25 m/s. With a magnetic ring diameter of 49 mm = 0.049 m, according to the formula, a speed of 1,267 rpm can be reached (the value can also be read out in table 2 (column 49 mm/line 3.25 m/s)). Under

consideration of the recommendation to stay 10 % below this, a speed of 1,140 rpm is not to be exceeded.

Magnetically coded position and angle measurement system

S1H series

S1F series

S2B/S2E/S1C series

Accessories

Basic Information and Definitions Definitions Examples and help for selecting the system